覆盖700余种风险,MIT发布最全AI风险数据库

麻省理工学院(MIT)研究人员近日发布了一个号称迄今为止最全面的覆盖风险T发I风AI风险动态数据库,涵盖了43大AI风险类别共计777种AI风险。余种

这是布最业界首次尝试全面整理 、分析和提取人工智能风险,险数并整合成一个公开可访问 、据库全面 、覆盖风险T发I风可扩展的余种分类风险数据库 。为业界统一定义、布最审计和管理人工智能风险奠定了基础 。险数

对于从事AI安全和治理的据库专业人士来说,这是覆盖风险T发I风一个不可或缺的知识库  ,云计算可用于创建自己(所在企业)的余种个性化风险数据库。

AI风险数据库

MIT科技评论的布最一篇文章指出 ,AI技术应用面临多种危险 ,险数系统可能存在偏见、据库传播错误信息,甚至具有成瘾性 。这些风险只是冰山一角,AI还有可能被用于制造生物或化学武器,甚至在未来失控,造成难以挽回的灾难性后果。

AI风险全景图

为了满足AI风险治理的迫切需求,源码下载MIT的计算机科学与人工智能实验室(CSAIL)下属的FutureTech团队着手开发了“全覆盖”AI风险数据库 。

据CSAIL网站发布的新闻,研究人员在现有的AI风险框架中发现了大量严重漏洞 ,现有的最详尽的AI风险框架(例如NIST 、谷歌和欧盟发布的框架)也仅涵盖了所有风险的约70% 。因此 ,项目负责人Peter Slattery博士担心决策者可能会因为认知偏差而忽略重要问题,从而形成集体决策盲区。亿华云

MIT的AI风险数据库旨在为学者 、安全审计人员 、政策制定者 、AI公司和公众提供关于AI风险“全景图”,为研究 、开发和治理AI系统提供了一个统一的参考框架。该数据库由三部分组成  :AI风险数据库 、AI风险因果分类法以及AI风险领域分类法  ,具体如下 :

AI风险数据库 :记录了从43种现有框架中提取的700多种风险,并附有相关引用和页码 。AI风险因果分类法 :分类AI风险发生的方式、时间和原因。模板下载AI风险领域分类法 :将风险分为七大领域和23个子领域 ,涵盖歧视与有害内容、隐私与安全 、虚假信息 、恶意行为者及误用 、人机交互、社会经济与环境危害  、AI系统安全与故障等 。AI治理的利器

Info-Tech研究集团首席研究总监Brian Jackson认为,AI风险数据库对负责AI治理的企业领导者来说极具价值。它不仅帮助企业识别新的AI风险,还可以作为制定具体治理策略的基础工具 。香港云服务器此外 ,该数据库以Google Sheets的形式提供  ,便于各组织根据自己的需求进行定制 。

AI风险数据库的功能和适用场景如下:

通用功能 :

吸纳新成员进入AI风险领域。为复杂项目奠定基础。为开发更细化或特定的分类体系提供信息支持(例如,系统性风险或欧盟相关的虚假信息风险) 。利用分类体系进行优先级排序(如通过专家评分) 、综合分析(如进行审查)或比较(如跨领域探讨公众关注点) 。识别被忽视的领域(如AI的免费模板福利和权利) 。

适用人群和场景 :

政策制定者 :用于制定法规和共享标准的开发。审计人员 :开发AI系统的审计标准 。学术界 :识别研究空白 ,开发教育和培训 。行业 :内部评估和准备AI风险,制定相关战略 、教育和培训。

尽管数据库还存在一些限制 ,例如依赖现有的43种分类法  ,可能遗漏新兴的特定领域风险 ,但MIT的研究人员表示,这项工作为未来的AI风险评估奠定了基础 ,促进了更协调和全面的风险管理方法。

展望未来 :AI治理的新篇章

面对AI技术的野蛮生长和潜在风险的快速累积  ,越来越多的企业和机构在部署AI应用时更加谨慎 ,并渴望提高严重滞后的AI风险治理能力。

MIT发布的AI风险数据库为AI的健康发展提供了全方位的风险地图,标志着AI治理的新篇章已经开启。

Gartner副总裁分析师Bart Willemsen指出,这项研究是迈向更深入理解AI技术风险的重要一步 。他期待未来的版本能够不仅列出AI风险,还能提供相关的缓解措施,为行业应用提供最佳实践指南 。

滇ICP备2023006006号-15